Disruption of prostaglandin E2 receptor EP4 impairs urinary concentration via decreasing aquaporin 2 in renal collecting ducts.
نویسندگان
چکیده
The antidiuretic hormone arginine vasopressin is a systemic effector in urinary concentration. However, increasing evidence suggests that other locally produced factors may also play an important role in the regulation of water reabsorption in renal collecting ducts. Recently, prostaglandin E2 (PGE2) receptor EP4 has emerged as a potential therapeutic target for the treatment of nephrogenic diabetes insipidus, but the underlying mechanism is unknown. To evaluate the role of EP4 in regulating water homeostasis, mice with renal tubule-specific knockout of EP4 (Ksp-EP4(-/-)) and collecting duct-specific knockout of EP4 (AQP2-EP4(-/-)) were generated using the Cre-loxP recombination system. Urine concentrating defect was observed in both Ksp-EP4(-/-) and AQP2-EP4(-/-) mice. Decreased aquaporin 2 (AQP2) abundance and apical membrane targeting in renal collecting ducts were evident in Ksp-EP4(-/-) mice. In vitro studies demonstrated that AQP2 mRNA and protein levels were significantly up-regulated in mouse primary inner medullary collecting duct (IMCD) cells after pharmacological activation or adenovirus-mediated overexpression of EP4 in a cAMP/cAMP-response element binding protein-dependent manner. In addition, EP4 activation or overexpression also increased AQP2 membrane accumulation in a mouse IMCD cell line (IMCD3) stably transfected with the AQP2 gene, mainly through the cAMP/protein kinase A and extracellular signal-regulated kinase pathways. In summary, the EP4 receptor in renal collecting ducts plays an important role in regulating urinary concentration under physiological conditions. The ability of EP4 to promote AQP2 membrane targeting and increase AQP2 abundance makes it a potential therapeutic target for the treatment of clinical disorders including acquired and congenital diabetes insipidus.
منابع مشابه
Immunolocalization of the four prostaglandin E2 receptor proteins EP1, EP2, EP3, and EP4 in human kidney.
Four prostaglandin E2 receptor subtypes designated EP1, EP2, EP3, and EP4 have been shown to mediate a variety of effects of prostaglandin E2 (PGE2) on glomerular hemodynamics, tubular salt and water reabsorption, and on blood vessels in the human kidney. Despite the important role of renal PGE2, the localization of PGE2 receptor proteins in the human kidney is unknown. The present study used a...
متن کاملProstaglandin E2 in the Regulation of Water Transport in Renal Collecting Ducts
The kidney plays a central role in the regulation of the body water balance. The process of targeting the water channel aquaporin-2 (AQP2) on the apical plasma membrane of the collecting duct (CD) principal cells is mainly regulated by the antidiuretic peptide hormone arginine vasopressin (AVP), which is responsible for the maintenance of water homeostasis. Recently, much attention has been foc...
متن کاملProstaglandin E2 promotes cell survival of glomerular epithelial cells via the EP4 receptor.
Visceral glomerular epithelial cells (GEC) are crucial for glomerular permselectivity and structural integrity in the kidney. The current study addressed the role of cyclooxygenase (COX)-2 and its product prostaglandin (PG) E2 in GEC survival. We generated a subclone of cultured rat GEC, which overexpress COX-2 in an inducible manner. When COX-2 was induced, GEC survived better in serum-deprive...
متن کاملProstaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells.
Under conditions of high dietary salt intake, prostaglandin E2 (PGE2) production is increased in the collecting duct and promotes urinary sodium chloride (NaCl) excretion; however, the molecular mechanisms by which PGE2 increases NaCl excretion in this context have not been clearly defined. We used the mouse inner medullary collecting duct (mIMCD)-K2 cell line to characterize mechanisms underly...
متن کاملLocalization of prostaglandin E(2) EP2 and EP4 receptors in the rat kidney.
We investigated the localization of cAMP-coupled prostaglandin E(2) EP2 and EP4 receptor expression in the rat kidney. EP2 mRNA was restricted to the outer and inner medulla in rat kidney, as determined by RNase protection assay. RT-PCR analysis of microdissected resistance vessels and nephron segments showed EP2 expression in descending thin limb of Henle's loop (DTL) and in vasa recta of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 27 شماره
صفحات -
تاریخ انتشار 2015